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when Government drawings, specifications, or other data are used for any purpose
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1. SUMMARY

The ability to predict the coupled effects of complex transport phenomena with de-
tailed chemical kinetic. is criticz. in an understanding of turbulent reacting flows, in im-
proving engine efficiency, and in the study of pollutant formation. Since three-dimensional
models combining both fluid dynamical effects with finite rate chemistry are as yet com-
putationally infeasible, the modeling of chemically reacting flows generally proceeds along
two independent paths. In one case chemistry is given priority over fluid mechanical effects
and these models are used to assess the important elementary reaction paths, for exam-
ple. in hydrocarbon fuels. In the other case, multidimensional fluid dynamical effects are
emphasized with chemistry receiving little or no priority.

The goal in reacting flow computations is to be able to combine the effects of detailed
chemistry with complex fluid mechanics. During the past six months, our Phase I SBIR
concentrated in this direction. We investigated several areas in which the modeling of
chemically reacting flows could be improved:

- I. We incorporated detailed kinetics with complex transport in the solution of one-
dimensional diffusion flames.

(3%

. We investigated flame sheet initialization procedures.

3. We considered more implicit solution algorithms for the highly nonlinear discrete equa-
tions.

As a result of the limited computer resources available under Phase I combined with
. the computational complexity of calculating chemically reacting flows, we devoted a large
ot part of our effort to the solution of counterflow diffusion flames. Unlike models in which
) the chemistry and transport phenomena are approximated by simplified relations, we in-
corporated hoth detailed finite rate chemistry and complex kinetic theory transport effects
in our model. We then investigated the use of a flame sheet model as a means of providing
improved starting estimates for the finite rate counterflow problem. Solution of the flame
sheet and finite rate equations was accomplished with a combination of time integration =
and Newton'’s method. Based upon the success of our study in one dimension. we directed =
our efforts to two-dimensional problems. In particular, we generalized our one-dimensional
flame sheet model to two dimensions and, in parallel with this effort, we investigated ways
of improving the computational efficiency of the primitive variable implementation of the

TEACH code. The results of our Phase I research clearly indicate the feasibility of our
methodology in solving reacting systems with detailed transport and complex chemistry. 7
This methodology has potential applications to problems in turbulent reacting flows, en- ,"52
gine efficiency, commercial power generation units, and pollutant formation. e
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2. COUNTERFLOW DIFFUSION FLAMES

The flame type of most practical combustion devices is the diffusion flame. These
flames are important in the interaction of heat and mass transfer with chemical reactions in
ram jets, jet turbines and commercial burners. Three-dimensional models that couple the
effects of fluid flow with detailed chemical reactions are as yet computationally infeasible.
We can, however, obtain important information in practical systems by considering two-
dimensional configurations. The counterflow diffusion flame is one such configuration.

' Experimentally these flames can be produced when a reaction zone is stabilized near
the stagnation point of two infinitely wide coaxial concentric jets (1] (see Figure 1). Fuel
is emitted from one jet and oxidizer (air) from the other. Combustion occurs within a
thin flame zone near the stagnation point where the fuel and the oxidizer are in stoi-
chiometric proportion. Although the flow in the double jet experimental configuration is
two-dimensional, the mathematical model can be reduced to the solution of a system of
coupled nonlinear two-point boundary value problems along the stagnation point stream-
line. In this way we can investigate the effect of detailed chemical kinetics with complex
transport while still having a computationally feasible problem.

2.1 Problem Formulation

Our model for counterflow diffusion flames assumes the flow to be laminar. stagnation
point flow. Hence, the governing boundary layer equations for mass, momentum, chemical
species and energy can be written in the form

I(puz®) + d(pvz?)

32 3y =0, (2.1)

pud— + pv g—j + gz (7% (ug—Z—) . (2.2)

pu-aa—yf + pu %zf + aiy (PYiViy) — Wy =0, k=1,2,...,K, (2.3)

Puc,,g—f + pvc,,%% - —()a—y </\6T> EK: kahprng + gwkw’khk =0, (2.4)
where « represents a geometric factor (@ = 0 for cartesian coordinates and « = 1 for

cylindrical coordinates). The system is closed with the ideal gas law,
pW

= =% (2.5)

p=

In these equations r and y denote independent spatial coordinates in the tangential
and transverse directions, respectively; T. the temperature; Yi, the mass fraction of the
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species; p, the pressure; 1 and v the tangential and the transverse components of the
velocity, respectively; p, the mass density; Wy, the molecular weight of the kth species: W,
the mean molecular weight of the mixture; R, the universal gas constant: A. the thermal
conductivity of the mixture; ¢,, the constant pressure heat capacity of the mixture; r,,.
the constant pressure heat capacity of the kth species; w;, the molar rate of production of
the kth species per unit volume; h;, the specific enthalpy of the kth species; u the viscosity
of the mixture and V}, is the diffusion velocity of the kth species in the y direction. In
both configurations the free stream (tangential) velocity at the edge of the boundary layer
is given by u., = ar where a is the strain rate.

Upon introducing the notation

f== (2.6)
Ueo
V = pv, (2.7)
the boundary layer equations can be transformed into a system of ordinary differential
equations valid along the stagnation-point streamline z = 0. For a system in rectangular
or cvlindrical coordinates, we have
dv
— +al(l =0, 2.8
ay tall+alef (28)
d df’ df’
_— —_— ) -V — - N2y = 0, 29
2 (1 L) v L+ afoe - ol (29)
d .. dY )
—— (V) - V—+w W, =0, k=1.2.... K, 2.10
dy(p A &y + w W, ( )
d { dT T & ir &
— A== ) -,V — — YiVicoe— — iWihe = 0. 2.11
(ly< dy) Cp dy ;0 k I:cpkdy ;wk Nk ( )
The boundary conditions for the double-jet configuration at y = —o0 are given by
V=V_. (2.12)
' Poo o
= [ L= 2.13)
/ P (
Yszk_m, ,&—'1,2,....1\- (:’.14)
T=T_, (2.15)
and at y = 2 by
[ =1, (2.16)
Yo=Y . k=1.2...., K (2.17) |
3
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”
g T = Two. (2.18)
»
The mass flux. temperature, and species mass fractions (V_ . T_oo, Yi_ ) at the fuel jet
. are specified quantities as are the temperature and species mass fractions (T and Yy )
\.( at the oxidizer jet.
NS
N

2.2 Flame Sheet Model

“Despite the outwardly simple form of the counterflow equations, the determination of
a “good” initial solution estimate can be difficult. The difficulty is due to the exponential
dependence of the chemistry terms on the temperature and to the nonlinear coupling of
the fluid and the thermochemistry solution fields. In previous work, we focused our efforts
on the solution of adiabatic and nonadiabatic premixed laminar flames by adaptive finite
difference methods [2-3]. In these problems cubic polynomials and Gaussian shaped profiles
were used as starting estimates for the major and minor species on an initial coarse grid.
These approximations were often sufficient to bring the starting estimates into the domain
of convergence of Newton's method.

In adiabatic and nonadiabatic premixed laminar flame problems the conservation of
mass and momentum reduces to the specification of a constant mass flow rate and a
constant thermodynamic pressure [2-3]. Hence, thermochemical considerations play a more
importaut role in these problems than do fluid dynamical aspects. This is not the case
in counterflow diffusion flames. In particular, there is a strong coupling between the
fluid dynamic and the thermochemistry solution fields in these flames. We have found
that. although the solution procedure used in premixed laminar flame problems can work
in selected counterflow cases, it does not provide a sufficiently robust or efticient starting
estimate from which Newton's method will converge. In addition, the relaxation to steady-
state (or at least until the solution is within the convergence domain of Newton's method) is
very siow. The importance of these flames in turbulence modeling and in the determination
of chemically controlled extinction limits. however, necessitates the development of an

efficient <tarting procedure. We couple the appropriate equations of mass and momentum
with a Shvab-Zeldovich equation to provide flame sheet starting estimates for the mass
Hux in the transverse direction, the similarity function. the temperature, and the stable
major species in the fame.

Our starting point is the assumption that the fuel and the oxidizer obey a single overall
irreversible reaction of the type

Fuel (F) 4+ Oxidizer (O) — Products (P), (2.19)
in the presence of an inert gas (N). We have

vl + v —vpl, (2.20)

4
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where vy, vpo and vp are the stoichiometric coefficients of the fuel, the oxidizer and the
product, respectively In addition, we neglect thermal diffusion and assume that the ordi-
nary mass diffusion v 'ocities can be written in terms of Fick's law, that is

. Dy dY}
Vi=~———, k=12,... K, 221
& Y, dy (221)
where Dy is the diffusion coefficient of the kth species with respect to the mixture. We
» also take ¢, = ¢p, to be constant. With these approximations we can write
% +a(l+a)pf' =0, (2.22)
d ( dff df’ n2
— 2 v - = 2.2
d dYr dYr .
— —- ) =V —-W = 2
dy (pDr dy ) dy rurw =0, (2.24)
d dYo .dYo ,
— — | -V — =W = .
dy (pDo dy ) dy olVoWw 0, (2 25)
d dYp dYp .
_— Dp—— | -V — %% =0, .2
dy (” P dy ) ay e (2.26)
d dYy dYy
dy (p N dy ) dy 0 (2.27)
@ <id.—T) _y 9T Wrvehe + Wovoho - Wevehe) . _ (2.28)
dy \ c, dy dy Cp
where . . .
w=-2FE_ _Yo _ur (2.29)
Vg Vo Up

is the rate of progress of the reaction and where we have made use of the fact that
S Y=o

If we introduce the heat release per unit mass of the fuel Q where

WDVO Wpl/p
=h ho — hp. 2.
. Q F+ Woor 0~ Wops P (2.30)
and if we assume that the Lewis numbers
A A
Ler = Lep = ——, 2.31a
pDgcp pDoe, ( )
A A
Lep = ,Ley = . 2.311
ep pDpc, Lo pDve, (2.31h)




WWW‘“V“&*WV&NRVer;m.‘.-—u»‘ e

TN K

...............

are all equal to one, then each of the Shvab-Zeldovich variables

ZF=n~4h,+%w—Igy (2.32)
c,, Wol/o
= - 2.33
Zo=Yo—-Yo_ + QWrop (T - T), (2.33)
Cp Wpllp
VeV, - 34
Zp=Yp—-Yp_ O Weos —— (T — Ty), (2.34)
Zy =Yn - Vi, (2.35)
satisfies the following differential equation
dZ, dZ,
-V—= N, 2.36
Z (pDkdy) ay 0, k=F,O,P, (2.36)
with
Zk(—oo) =2 . (2.37)
Zk(oo) =0, (2.38)

for the double-jet problem where Z;__ is constant. As a result, all of the Z; are propor-
tional to each other and to the conserved scalar S which satisfies

d dsS ds

— —_ 2.39

@(D@> V@ 0 (2.39)
S(~o0) =1, 2.40)
S{e0) =0, (2.41)

where D is a diffusion coefficient.

From (2.36) and (2.39) we can write
Zy=2¢__Sy), k=F,0,P,N. (2.42)

Equation (2.39) can be coupled with equations (2.22) and (2.23) to obtain profiles for V", f’
and S. To complete the specification of the starting estimate, we must be able to recover
the temperature and the major species profiles from the conserved scalar. If we utilize the
result in (2.42) along with the fact that in the flame sheet model fuel and oxidizer cannot

co-exist. we can derive relations for the temperature and major species on either side of
the reaction zone. On the fuel side, we have

Q Wrurr
T=T 4+ Y, - 5), 2.43
TS+ [T+ Yo 20 [ 1= 5) (2.43)
) Wrup
1 =Y, S ¢ S —-1), 2.44
: Foo +}omW0V0( ) (2.44)
6
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Yo =0, (2.45)
%%
Yr = Yo tob(1-5), (2.46)
Wovo
and
Yn=Yn _(1-S)+YnN__S. (2.47)
On the oxidizer side, we have
T=Tx(1-95)+ [?—Yp_w + T_oo] S, (2.48)
p
Yr =0, (2.49)
WoI/o
5= 1-S5)-Y, S 2.
o= Yo,( )-Yr_, Wove (2.50)
_ Wpl/p
Yp = Wevr Yr_.. S, (2.51)
and
Yy =Yy, (1-S)+Yy__S. (2.52)

The diffusion coefficient and the viscosity can be determined by specifying a reference
Prandtl number and a transport relation for the viscosity. In particular, we let (Pr),.; =

0.75 (air) and
— 2 ' (f) 53
p=pol ) s 2.53)

where r = 0.7, T, = 298 K and po = 1.85 x 10™* gm/cm-sec is again a reference value for
air. The scaled heat release parameter Q/c, = AT can be determined from the heat of
combustion of the system and a representative heat capacity.

2.3 Method of Solution

Solution of the governing equations proceeds with an adaptive nonlinear boundary
value method. Our goal is to obtain a discrete solution of the governing equations on the
mesh M. where

M={-L=yw<y<...<ym=L} (2.54)

With the continuous differential operators replaced by finite difference expressions. we
convert the problem of finding an analytic solution of the governing equations to one of
finding an approximation to this solution at each point of the mesh M. We seek the solution
U, of the nonlinear system of difference equations

*
F(Uy) = 0. (2.55)
7
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For an initial solution estimate [/° that is sufficiently “close” to Uy, the system of equations
in (2.55) can be solved by Newton's method. We write

JUFY (U = U¥) = =\ F(U¥), k=0.1,.... (2.56)
where U* denotes the kth solution iterate, Ak the kth damping parameter (0 < A < 1) and
J(U*) = OF(U*)/8U the Jacobian matrix. A system of linear block tridiagonal equations
must be solved at each iteration for corrections to the previous solution vector. In the
counterflow diffusion flame problem, the cost of forming (we use a numerical Jacobian) and
factoring the Jacobian matrix can be a significant part of the cost of the total calculation.

In such problems we apply a modified Newton method in which the Jacobian is re-evaluated
only periodically [4].

The solution of combustion problems, such as the counterflow diffusion flame. requires
that the computational mesh be determined adaptively. Many of the methods that have
been used to determine adaptive grids for two-point boundary value problems can be
interpreted in terms of equidistributing a positive weight function over a given interval
(5.6]. We say that a mesh M is equidistributed on the interval (—L, L] with respect to the
non-negative function 1" and the constant C if

Vy+1
/ W dy=C. j=0.1,...m-1L (2.57)
L

We determine the mesh by employing a weight function that equidistributes the differ-
ence in the components of the discrete solution and its gradient between adjacent mesh

points. Upon dencting the vector of N = K + 3 dependent solution components by
UV ={U.U,..... Ux|T. we scek a mesh M such that
e T - - J=01....m-1
—l dy < ¢ U, — in U; T : 2.58
/y | ay' Y= l—-Fls%L YTk . 1=12....N (2:58)
and
b dq2, dU; . dU, =1,2.....m—1
/ |41 dy < =~ max — — min —| J . L. (2.59)
v dy -L<y<L dy —-L<y<L dy r=1.2,....\N

where & and = are small numbers less than one and the maximum and minimum values of U,

and dl/,/dy are obtained from a converged numerical solution on a previously determined
mesh.

The coarse to fine grid strategy eliminates many of the convergence difficulties asso-
ciated with solving the governing equations directly. However, convergence of Newton's
method on the initial grid requires a “good™ initial estimate for /. We can improve the
Hame sheet starting estimate by applying a time-dependent starting method on the initial

)
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grid. We remark that, fundamentally, there are two mathematical approaches for ~olving

——c

one-dimensional flame problems - one uses a transient method and the other ~olves the
steady-state boundary value problem directly. Generally speaking. the transient meth
ods are robust but computationally inefficient compared to the boundary value methods
which are efficient but have less desirable convergence properties. Most of the numerical
techniques that have been used to solve flame problems have employed a time-dependent

method. Variations of this approach have been considered by a variety of researchers (see.
e.g..«7-11]). In these methods. the original nonlinear two-point boundary value problem i~
converted into a nonlinear parabolic mixed initial-boundary value problem. This i~ accom-
plished by appending the term J(e)/3dt to the left-hand side of the conservation equations.
This results in a semidiscrete set of equations

ou
= = ) 2.60)
5 = V) (2.60)

with appropriate initial conditions. If the time derivative is replaced, for example. by a
backward Euler approximation, the governing equations can be written in the formn

(Un+l _ (]n) _

FUMY = F(U™Y) - =0, (2.61)

rn+l

where for a function g(t) we define ¢g" = ¢g(t") and where the time step r"*! = "+ — ¢*.
At each time level we must solve a system of nonlinear equations that looks very similar
to the nonlinear equations in (2.55). Newton's method can again be used to solve this
syvstem. The important difference between the system in (2.55) and (2.61) ix that the
diagonal of the steady-state Jacobian is weighted by the quantity 1/7"*'. This produces a
better conditioned system and the solution from the nth time step ordinarily provides an

excellent starting guess to the solution at the (n + l)St time level. The work per time step
15 similar to that for the modified Newton iteration, but the time-like continuation of the
numnerical solution produces an iteration strategy that will, in general, be less sensitive to
the initial starting estimate than if Newton's method were applied to (2.55) directly. As
a result. when we ultimately implement Newton's method on the steady-state equations
directly, we obtain a converged numerical solution with only a few additional iterations.
This time-dependent starting procedure can also be used on grids other than the initial

OT11¢.

2.4 Numerical Results

We applied the flame sheet starting estimate to a diluted methane-air flame in the
cvlindrical double-jet configuration (see Figure 1). As we discussed in Section 2.2, the
Hame sheet model provides initial solution profiles for the mass flux in the transverse
direction. V', the similarity function, f’. the temperature. T, and the major species, pe.

9
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CH,, O4. N3, CO5 and CO. Gaussian profiles were used for the minor species. The detailed
kinetics mechanism used in the calculations is listed in Table 1.

After getting the flame sheet starting estimate, we solved the full set of governing
equations in a two-step procedure. Specifically, we determined a solution to the mass,
momentum, and species equations with the energy equation replaced by the flame sheet
temperature profile. This procedure is similar to the two-pass solution method used in
the solution of adiabatic premixed laminar flames [3]. The fixed flame sheet temperature ‘
solution (T,,.) was then used to obtain a solution to the full fluid dynamic-thermochemistry
model (T;,). This procedure helped to reduce both convergence difficulties and total CPU
time.

In our problem, the separation distance of the two jets was 1.4876 cm. The boundary
conditions at the fuel jet were given by

V =28x107% (2.62)
f' = 1.216, (2.63)
Yoy, = 0.598, Yy, =0.402, Yiicn,n, =0, (2.64)
T =294 K, (2.65)
and at the oxidizer jet by
f'=1.0, (2.66)
Yo, =0.18, Yy, =082, Yiso,x, =0, (2.67)
T =294 K. (2.68)

The mass ow rate was in units of gm/cm?-sec and the densities of the fuel and the oxidizer
mixtures were used in obtaining the value of the similarity function at the fuel jet. The
mass flow rate boundary condition corresponds to a fuel duct velocity of 35 cm/sec. The

strain rate used in the calculation was a = 40 sec™!.

A solution was obtained on a nonuniform grid consisting of 38 grid points. This

solution was then used as the starting estimate for the fixed temperature solution. One :
hundred adaptive time steps were taken to help bring the solution within the domain of
convergence of Newton's method on the 38 point grid. After the time steps. Newton's .

method converged with only one iteration. Once this solution was obtained. the mesh was
refined and a solution was calculated on the finer grid. This procedure continued until the
adaptive mesh criteria were satisfied. The refined fixed temperature solution was then used
as the starting estimate for the complete fluid dynamic-thermochemistry solution. Two
additional grid refinements were performed to obtain a final solution on a grid consisting
of 65 nonuniform points. On the refined grids Newton's method converged after applying
ouly 10-20 time steps. The mesh spacing was such that 600 equispaced points would have
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been needed to obtain comparable accuracy. The total CPU time for the entire procedure
was approximately three hours and 40 minutes on a VAX-8600. Approximately 6 CPU
seconds were needed for the flame sheet calculation, 130 minutes for the T,,, calculation
and approximately 90 minutes for the T, solution. In contrast, we were unable to obtain a
complete T;, solution for this problem when the premixed laminar flame starting procedure
was employed.

In Figure 2 we compare the flame sheet temperature profile with the calculated finite
rate temperature profile. We observe that the agreement is generally quite good. Similar
results are illustrated in Figures 3 and 4 for the similarity function and the normal velocity.
The flame sheet model is able to predict adequately the location of the stagnation point
along with the “double peak™ velocity profile.

With the success of the flame sheet starting procedure, we then compared the results
of our detailed chemistry model with the experimental measurements of Seshadri [1]. In
Figure 5 we illustrate the experimental (circles) and the calculated (solid line) temperature
profiles for a problem with similar input conditions as those described in (2.62)-(2.68).
We observe that excellent agreement is obtained for the general shape of the profiles
as weli as for the peak temperatures (maximum experimental = 1691 K and maximum
computational = 1680 K). On the rich side of the flame, however, the temperature profiles
show some discrepancy. These differences are due most likely to the neglect of (*; chemistry
in the chemical kinetics mechanism. In Figures 6 and 7 we compare the experimental
and computational results for the stable major chemical compounds with the physical

coordinate as the independent variable. The solid lines represent the numerical calculations
and the points represent the experimental measurements. The profiles reveal excellent
agreement for the mole fractions of CHy, Oy, Ny, H,O and CO,. The profiles for 'O and
H,;. however, show some discrepancy. The differences between the experimment and the
calculations are due again to the neglect of C, chemistry in the calculations. Minor species
and radicals are illustrated in Figures 8 and 9.

3. FLAME SHEET MODEL OF AN AXISYMMETRIC DIFFUSION FLAME

The modeling of axisvmmetric diffusion flames can be reduced to the solution of a set of
coupled nonlinear boundary value problems. In these problems we desire solution profiles

to as many as several dozen species concentrations in addition to the temperature and the
velocity fields. Although axisyimmetric flames are important in combustion applications.
they have received relatively little attention in theoretical flame studies. Part of this
neglect ix due to the two-dimensional nature of the problem coupled with the complexities
assoctated with the combined effects of transport phenomena and chemical processes. In
the axisymmetric diffusion ame we consider. a fuel jet discharges into a laminar air stream.
The Hames can be etther confined or unconfined. In both cases the tubes throngh which
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the fuel and the oxidizer flow are concentric and have radii R; and Ro, respectively. In
both configurations the two gases make contact at the outlet of the inner tube and a flame
resembling a candie results.

In the second part of our Phase I SBIR we investigated the generalization of our one-
dimensional flame sheet model to two dimensions. The goal of this work was to provide
multi-dimensional starting estimates for the full chemistry-fluid dynamic model that will
be studied in Phase II. In an effort that complements the one described in Section 4, we
used a stream function-vorticity as opposed to a primitive variable formulation. In this
way the pressure (and the continuity equation which is not in the standard elliptic form
of the remaining equations) could be eliminated from the model and we could reduce the
size of the system to be solved.

We define the vorticity as the amount of counter-clockwise rotation in the fluid. We
have
_Ov,  Ov,
~ 8z Or
The stream function ¢’ is used to replace the radial and axial components of the velocity
vector by a single function. It is defined in such a way that the continuity equation is

identically satisfied. We have

W

(3.1)

oY

prop = —3-, (3.2a)
pru, = %‘k (3.2b)

Our flame sheet model follows the procedure we discussed in detail in Section 2.2. We
again assume a single global irreversible reaction. The diffusion velocity is given by Fick’s
law and the heat capacities are assumed constant. OQur model can be written in the form

d (1Y o (1Y
i B — | =) = — 3.
(9:<rp82)+6r(rp6r) “ (33)
|9 (wov) 0 (wdv
dz \ r Or or \ r 9z
_—_8_ 5 0 " _0 30 (p 2 Op 2 v12-+v3 : —
2 (2(0) 24 ot (230) woen

9 (. OY g oY d OYr
or (‘5‘) *35: ("Fa‘) o (’”Df'a—r)

*-i (Tpr?—Yi> - prl/p'Lb =0, (35)
dz 0z

12




d , oY a , oY o Yo
~ar (’Oa—z) * 32 (‘057) ~ar (”’00757>

d Y .
_a (rpDo—a;9-> — rWovow = 0, (36)
5 (75) + 3 (o) ~ 5 (rere 57
_8 (r,,p,,a_yﬂ> + tWprpio = 0, (3.7)
az 0z
3 Y 9 Y 1e] ) 4
~ 5 (YN&) + 32 (YN 31’) Or ("PDN_ar )
] oYy
~3; <rpDN Ep ) =0, (3.8)

and
a N a oy ad oT a orT
e [52 (T_aT) "~ or (TE)] ar ("\E> Y ("\E)

r"Vpl/php + Wovoho — WPUPhPiU
Cp

=0, (3.9)

where w is again the rate of progress of the reaction. If we follow the argument in (2.30)-
(2.31), we find that each of the Shvab-Zeldovich variables

Zr =Yr—Yr_ + %(T — Two), (3.10)
c Wollo
Zo = Yo - oV T ) .
o =Yo Yooo + O Weor (T Too) (3 ll)
Zp=Yp—Yp — 2WPVE 11 (3.12)
P P Py QWFVF o0/ =
Zy =Yy —Yu_, (3.13)

satisfies the differential equation
aJ N g Y d 0Zy
o (Z)_> * 5z (Z* ar) ar (”’D* ar )

—,3, (rpDkaZk) =0, k=F,0,P.N. (3.14)

One can show that all of the Z; are proportional to each other and to a conserved scalar
S that satisfies an equation similar in form to (3.14). Relations for the temperature and
the major species follow exactly as in Section 2.2.

We applied the two-dimensional flame sheet model to an unconfined axisyvmmetric
methane-air flame with an inner jet (fuel) radius of 0.254 cm and an outer jet (air) radius

13




A
el
o Yo' 2n )

> -‘-“)1'
EXAACTE

of 2.54 cm. The velocities of the fuel and the oxidizer were 10 cm/sec and the temperature
R of the two gases was 298 K. Utilizing a generalization of the solution procedure discussed
in Section 2.3, we obtained solution profiles for the temperature, major species and the

o
A

'S’ velocities on a 21 x 41 grid. Results of the calculations are illustrated in Figures 10-15.
o

:".‘-: 4. PRIMITIVE VARIABLE METHODS IN TWO DIMENSIONS

R In this section we report on experimental modifications to the TEACH [12] code for
.:::f.:: solving the conservation equations of reacting flows in primitive variable form. We ex-
o

amined primarily the CPU-intensive SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm [13] for handling the momentum-pressure coupling, which lies at
the heart of TEACH, and to which TEACH reduces in the laminar, incompressible. single-

-
R
fu
LT

_fj:.'.j component case.
...: TEACH is a multidimensional steady-state compressible flow algorithm based on a
s e low-order control-volume discretization of the primitive variable equations in conservation
. form over staggered, orthogonal, tensor-product grids. In addition to the continuity and
'_.’ momentum equations, a number (in principal arbitrary) of conserved scalar equations can
D be accommodated by TEACH. These may include an energy equation, multiple specie equa-
"::l:j tions, and the empirical £ — ¢ turbulence model, which supplements the laminar equation
o system with two extra transport equations of the same generic form while modifying the
0N laminar diffusion terms in the remainder of the equation set.
"j. A large. sparsely coupled set of nonlinear algebraic equations results. The nonlineari-
j'.::.'; ties arise directly from the advective terms and the source terms, and indirectly through
"’ temperature-, pressure-, and composition-dependent laminar transport properties and
:_‘_: thermodynamic coefficients. and the velocity-dependent turbulent transport properties.
f_'-.'j:« A multistage variation of the block Gauss-Seidel method is used to solve this nonlinear
::::::: system. The outermost stage consists of cycling between a Poisson-like pressure correction
- :::;: equation (derived from a truncated substitution of the discrete momentum equations into
the discrete continuity equation, which is thus eliminated) and the transport equations
fv’}':-: for all of the other unknown fields. Within this latter block, the equations are relaxed
":" cyclically, field-by-field. Within the sub-blocks at the level of the individual fields, the
oy updates are computed in a block-line fashion so that a tridiagonal matrix is the largest
s implicit aggregate in the overall calculation. In practice, under-relaxation of the updates
-.f::_"«'_'.‘, is necessary.
"’;‘_ Variations of the TEACH code abound. The version with which we make our com-
g parisons is a revision obtained from one of the original authors, as described in [12]. Our

principal test problem for this section is the two-dimensional. incompressible, axisymmet-
b ric, nonreacting flow in a suddenly expanded laterally heated channel, the hydrodynamics

\ - of which are described in [14]. This is the test problem described in [12] and supplied with
e
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the official machine-readable copy of the code, being bound up therewith in a non-modular
way.

4.1 Advantages and Disadvantages of TEACH

. As a base on which to build a detailed-kinetics reacting flow solver, TEACH has severa!
advantages, which motivated us to improve its convergence properties:

e The pressure, which is in practice one of the fields of greatest interest, is readily
available as one of the unknowns of the problem, whereas the pressure is eliminated in
a stream function-vorticity formulation.

e The TEACH algorithm generalizes in principle to three dimensions, the space in which
all real engineering problems lie.

e The widely used k£ — ¢ turbulence model is built in.

e The wide user base of TEACH-like codes would seem to portend a high interest in the
ultimate production version of the reacting flow solver, and relative ease of transfer-
ability to the interested community.

There are also some major disadvantages:

e TEACH has many parameters (such as underrelaxation factors and iteration limits)
that are difficult to tune efficiently, and poor diagnostics by which to determine “con-
vergence”.

e Convergence is slow. being asymptotically linear at best, even for “easy” problems
(those with few species. the conservation equations for which are dominated by the
linearly implicit part of the source term, or by advection or diffusion).

e Convergence is unreliable in “difficult” problems (those with many species, the con-
servation equations for which are dominated by parts of the source term not treated
implicitly).

e There are no convenient data structures built into TEACH to assist the user in organiz-
ing the large volume of physical data (kinetic, transport. and thermodynamic) which
must be supplied in realistic detailed modeling.

Because of these disadvantages, much of our work in preparation for detailed modeling
in two dimensions has been carried out in a context other than the TEACH code. as !
described above. However, since there is ultimate interest in a primitive variables staggered '

grid code, we addressed the first two disadvantages to TEACH. as described in the balance
of this section.

4.2 Modifications of the TEACH Code - Outer Loop
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The weakness at the heart of the TEACH algorithm is in the solution of the discrete
nonlinear system. Linearization by decoupling at the field-by-field level provides only a
linear convergence rate for the outer iteration. Furthermore,. the degree of underrelaxation
found necessary in practice causes this rate to be slow. The most natural modification was
to implement a Newton-like algorithm for the outer loop.

Newton methods are desirable for their asymptotically superlinear convergence rates.
They have the big disadvantage compared to simpler iterative schemes, such as that of
plain TEACH, that they require formation and factorization of a Jacobian matrix. We
examined a recently developed Jacobian-free Newton-like method known as the nonlinear
generalized minimum residual method (NLGMR). A precursor of this method may be
found in [15]. More recently. very impressive results have been obtained with NLGMR in
the computational fluid dynamics context [16]. The incorporation of NLGMR into TEACH
can be accomplished in a very modular fashion, leaving most of the original code fully
intact. To be specific. the NLGMR algorithm is inserted between the control driver of
TEACH and the calls to the field-by-field solvers.

Let the action of one outer iteration of the TEACH algorithm be denoted by

Untt — M(un), (4.1)

where the vector u € RY represents the discrete unknowns of all of the fields (u, v, p,
etc.) and M is the nonlinear mapping that produces the (n + 1)st iterate from the nth. In
the TEACH code, M represents one pass through the routines CALCU, CALCV. CALCP. etc.. in
their proper cyclic order. The converged solution u, is the root of the system of nonlinear
equations

Flu)=u—- M(u) =0. (4.2)

.-

With the specification of the initial iterate, u,, the TEACH algorithm has the form of a
nonlinear block Gauss-Seidel method for F(u) = 0.

NLGMR provides a means of accelerating the TEACH iterations as follows (see [16]).
Throughout we denote by .J(u) the Jacobian matrix of F evaluated at u. When there is no
ambiguity, J(u) will be denoted simply by .J. Suppose that u,, is the current approximation
and that we wish to find a new approximation of the form w4, = u, + 6.

We write & in the form "
5= (4.3)
i=1

where the v, € R” are m orthonormal vectors, the specification of which will be given
shortly, and the o, are unknowns to he determined at each step. Ideally, we would carry
out the minimization of

| F(un + 6)]|
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over all vectors & to get the new iterate U,y = u, + 6. Instead of solving this numerically
difficult problem directly. we can linearize F about u,, by writing F(u, + 0) = F(u,) +
J(u,)é and seek to minimize

| F(ua) + J0|

over all vectors 6 of the form (4.3). If we choose the v, to form an orthonormal basis for the
Krylov subspace based on the Jacobian, namely span {v,,Juv;, J*v....,J™ " 'e )}, where
vy = F(u,)/||F(un)]]. then this minimization can be carried out by performing m steps of
the GMRES algorithm [17] applied to the linear system

J6 = —F(u). (4.4)

with the initial iterate 6y = 0. Note that an exact solution of (4.4) would yield the Newton
direction J ' F(u,). We leave most of the details of GMRES to the references; however, we
note several of its important properties. If m = NV the method, though iterative in nature.
delivers the exact solution of (4.4) and is thus a strict Newton’s method in this limit. If
the Jacobian is suitably conditioned, however, GMRES usually converges for m <« .V,
resulting in considerable savings over the linear algebra expense of a direct elimination
Newton algorithm. For sufficiently large m, its storage requirements are roughly half
those of theoretically equivalent Krylov subspace methods, such as GCR and ORTHODIR
(18]. and it« CPU time requirements are about one-third less. Finally, the method cannot
break down before finding the solution (in the absence of roundoff error) for arbitrary
nonsymetric indefinite matrices J.

Perhaps the most important aspect of the NLGMR algorithm described above is that
the Jacobian matrix J is never needed explicitly. The only operations using the Jacobian
matrix .JJ that are actually required in the implementation are matrix-vector multiphications
of the form w = Jr, which can be approximated by finite differences of F. viz..
F(u + hv) — F(u)

A .

where u is the point where the Jacobian is being evaluated and h is some carefully chosen

J(u)v x (4»5)

<mall scalar. In comparison to the typical cost of evaluating F(u), which requires one
application of the mapping M (u). there is very little overhead in the NLGMR algorithm.
and its overall cost can be estimated in units of F-evaluations, which are the <ame as plain
TEACH outer iterations.

An unfortunate and well-known flaw of Newton's method is that the domain of con-
vergence is typically quite small. In practice, NLGMR invariably diverges when applied
to TEACH in the form (4.2). In contrast, the TEACH iterations can often be stabilized by
sufficient underrelaxation if one can afford the price of the concommitant slow convergence,
A reliable cure for NLGMR. following [16]. is to introduce damping into F(u). that is_ to
replace (4.2) at each step with

Flu)y=u— (1 - A)M(u) — AM(u,). (4.6)
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.‘:j where A is a damping parameter to be selected adaptively, 0 < A < 1. Selecting A = 0
v corresponds to Newton's method. Selecting A = 1 corresponds to ordinary, unaccelerated
TEACH. If A is held at 1 until the TEACH iteration residuals begin to exhibit monotonic
;:::: convergence, a subsequent power-law decrease in A (as a function of iteration count) gen-
i erally brings about asymptotically superlinear convergence. To be specific. let p,, denote

some scaled Euclidean norm of the components of F(u,), and let @ denote the iteration
level at which the monotonic residual decrease criterion is first satisfied. (In practice.
we have been requiring an absolute decrease for five successive iterations, because of the
notorious oscillatory convergence profiles of plain TEACH.) Let pn denote the residual at
iteration n. Thereafter. we take

’\n = (Pn/pn)2 : bn—n' (47)

where b is a tuning parameter governing the rate of decrease of A, supplied by the user.
Typically, we choose b in the range 0.7-0.8, which promotes a fairly rapid transition from
plain TEACH to Newton's method once the tail of the TEACH iterations has been reached.
The pre-exponential factor is designed to hasten adaptively the transition to Newton's
method according to the rate of decrease of the residual.

In Figures 16-19 we show the type of savings that are achievable by wrapping NLGMR
around TEACH in this manner. The four figures are in two pairs—one pair (Figures 16
and 17) for a 16 x 16 grid (14 interior cells), and one (Figures 18 and 19) for a 30 x 30 grid
(28 interior cells). or twice the resolution of the first. Each pair contrasts the convergence
history of plain and NLGMR-accelerated TEACH for a laminar version of the standard test
problem by plotting the mass and momentum equation residuals (solid curves - individually
nondimensionalized as in the original TEACH) and the composite NLGMR residual (dashed
curve) against the number of evaluations of M(u). In the 16 x 16 case, the monotonically
decreasing tail is reached at 33 function evaluations. Thereafter, plain TEACH requires 105
outer iterations (costing one function evaluation each) to reach the convergence criterion
of a relative residual reduction of 1078, whereas NLGMR-accelerated TEACH requires only
7 additional outer iterations (costing a total of 67 function evaluations). Each plateau in

the NLGMR plots represents one outer iteration during which several GMRES steps may
be required. In the 30 x 30 case, the monotonically decreasing tail is reached at 60 function
evalnations. Thereafter, plain TEACH requires 153 outer iterations (costing one function
evaluation each) to reach the convergence criterion of a relative residual reduction of 1078,
whereas NLGMR-accelcrated TEACH requires only 9 additional outer iterations (costing a
total of 108 function evaluations). In terms of the overall number of function evaluations
from start to finish NLGMR allows reductions of 28% and 21%. respectively. In no case
was a krylov subspace of dimension higher than 20 required.

This is not a dramatic improvement; on the other hand, it has been achieved with
virtually no extra programining cost to the user, and some possible side benefits of NLGMR
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are as yet unexplored in connection with TEACH. For instance. in [16] the authors found
it possible to play loosely with the tuning parameters of an algorithm being accelerated
by NLGMR, since NLGMR had a stabilizing effect on the overall iteration. Hence. some
of the uncertainty that accompanies the selection of TEACH parameters for problems of a
previously unexplored scale may be relieved.

We conclude that the damped NLGMR technique provides a useful enhancement to
plain, TEACH in its present state of development. Further efforts to successfully marry these
two algorithms (exogenous to our AFOSR-sponsored reacting flow work) are currently
underway by SCA consultants.

4.3 Modifications of the TEACH Code — Inner Loop

In view of the preservation of the TEACH inner loops (as embodied in the routines
CALCU. CALCV. CALCP, etc.) in the NLGMR-enhanced version described above, it was natural
to look for further savings in solving the system of linear equations for the updates to each
field. Labheling each of u, v, p, etc. by the generic field ¢, in turn, these linear systems at
each inner iteration of the TEACH algorithm nominally have the form

apdp = ) _ arde + sp. (4.8)
k

at each point P of the grid on which ¢ is defined, where the sum extends over the four
neighbors of P. The coefficients arise from the control-volume discretization of the advec-
tion. diffusion and source operators using the “best available™ velocity and property data.
Because the advective fluxes are of hybrid upwinded form, all of the a; are nonnegative.
Because of the conservation form of the discretization,

ap = Zak. (4.9)

k

In fact. the field updates are generally underrelaxed due to the nonlinearities hidden
in the coefficients of (4.8). Thus, if ¢* represents the vector of unknowns calculated from
(4.8). where the coefficients are based on the nth iterate ¢", then

" = pot + (1 — p)o™. (4.10)

where g0 00 < g < 1 is an underrelaxation parameter. which may be set differently for
each field. (Typical values of i are 0.5 for the velocities and 1.0 for the pressure. with the
other conserved scalars somewhere in between.) If the degree of underrelaxation desired
in (4.10) 1s known a priori. it may be built into the coefficients of a modified version of
(4.8) with advantage. In fact. the TEACH routine block-line solver LISOLV actually solves

apop = Zakék + 5. (4.11)

k
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directly for ¢"*', where a;, = ap/p and sp = sp + (1 — p)apod™. This is algebraically
equivalent to the two-step process (4.8)-(4.9), but is numerically advantageous, because
it increases the diagonal dominance of the linear system, thus enhancing the convergence
rate of the block-line iterative solver.

For systems of appreciable size, GMRES with some form of approximate factorization
preconditioner is among the best methods for problems of the form (4.8). Hence, the block-
line solver LISOLV was replaced with several differently preconditioned GMRES methods
from PCGPAK [19]. The results were disappointing, with GMRES typically requiring 2.0
to 2.5 times as much CPU time as the block-line solver for the same degree of residual
reduction on a 16 x 16 grid with the full turbulent test problem mechanism in place. The
conclusion of this brief exercise is that for the amount of underrelaxation already built
into TEACH to stabilize the outer nonlinear iterations, the most elementary linear solvers
perform most efficiently for the inner iterations. Therefore. we recommend retaining LISOLV
in conjunction with NLGMR-TEACH.

5. CONCLUSIONS

We have demonstrated the feasibility of combining detailed transport phenomena with
complex chemistry in the solution of chemically reacting flows. We have illustrated the
effectiveness of flame sheet initialization procedures and a time integration-Newton non-
linear equation solver in the modeling of a counterflow diffusion flame. We have also made
improvements to the outer iteration of the primitive variable TEACH code. Our goals in a
Phase II SBIR will be to generalize these ideas to enable the efficient solution of axisym-
metric (laminar and turbulent) diffusion flames. Based upon our Phase I results. we are
confident that our approach will be successful.
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TABLE 1.

Reaction Mechanism Rate Coefficients In The Form k, = AT%exp(— Lo/ RT).
Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

REACTION A i3 E
1. CH,+ M =CH;+H+ M 1.00E+17  0.000 8G0).
2. CH,+ 0Oy, = CHy+ HO, 7.90E+13  0.000 56000.
3. CHy+ H=CH,;+ H, 2.20E+04 3.000 8750.
1. CH;+0O=CHy+OH 1.60E+06  2.360 7400.
5. CHy+OH = (CH; + H,O 1.60E+06 2.100 2460,
6. CH, O+ OH = HCO + H,0 7.53E+12 0.000 167.
7. CH,O+ H= HCO + H, 3.31E+14  0.000 10500.
8. CH, O+ M =HCO+H+ M 3.31E+16 0.000 81000.
9. CH,O+0 =HCO+OH 1.81E+13 0.000 3082.
1. HCO + OH = CO + H,0 5.00E+12  0.000 0.
11. HCO+ M =H+CO+ M 1.60E+14  0.000 14700.
12 HCO+H=C0O+ H, 4.00E+13 0.000 0.
13. HCO+0O=0H+CO 1.00E+13 0.000 0.
4. HCO+0O,= HO,+CO 3.00E+12 0.000 0.
15 CO+0+M=0C0,+M 3.20E+13 0.000 -4200).
16. CO+0OH=CO,+ H 1.51E4+07 1.300 -758.
17 CO+0,=C0O,+0 1.60E+13 0.000 41000).
18. CH;+0O,= CH;0 + O 7.00E+12 0.000 25652,
19. CH;O+M=CH,O+H+M 240E~+13 0.000 28812,
20. CH:0O+ H = (CH,O + H, 2.00E+13 0.000 0.
2l. CH;0+ OH = CH,0O + H,0 1.00E+13 0.000 0.
22 CHO+ 0O =CH,O+OH 1.00E+13 0.000 0.
23. CHO+ 0y, =CH,0O+ HO, 6.30E+10 0.000 2600,
24 CHy+ 0O, = CH,O+OH 5.20E+13 0.000 34574.
25. CH{+0=0CH, O+ H 6.80E+13 0.000 0.
26. CH,+OH = (H,0 + H, 7.50E+12 0.000 0.
27, HO,+CO =00,4+0H 5.80E+13 (.000 229034.
25 H,+ 0O, = 20H 1.70E+13 0.000 47780.
2. OH+H,= H,O+H LITE+09  1.300 36206.
30). H+0,=0H+0O 5.13E+16 -0.816 16507.
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TABLE I. (continued)

' Reaction Mechanism Rate Coefficients In The Form k; = AT%exp(—Eo/RT).
Units are moles, cubic centimeters, seconds, Kelvins and calories/mole.

REACTION A 8 E
} 3. O+H,=0OH+H 1.80E+10 1.000 8826.
32. H+O0,+M=HO;+ M* 2.10E+18 -1.000 0.
33. H+0,+0,=H0O;+ 0, 6.70E+19 -1.420 0.
34. H+0O;,+ Ny, =HOy+ N, 6.70E+19 -1.420 0.
35. OH+ HO, = H,0 + O, 5.00E+13 0.000  1000.
36. H+ HO,=20H 2.50E+14 0.000  1900.
37. O+ HO,=0,+OH 480E+13 0.000  1000.
38. 20H = 0+ H,0 6.00E+08 1.300 0.
39. H,+M=H+H+ M 2.23E+12 0.500 92600.
40. O+ M=0+0+M 1.85E+11 0.500 95560.
4. H+ OH+ M = H,0 + M°® 7.50E+23 -2.600 0.
42. H+ HO, = Hy + O, 2.50E+13 0.000 700.
43. HO,+ HO; = Hy049 + O, 2.00E+12 0.000 Q.
4. H;0,+ M =OH+OH+ M 130E+17 0.000 45500.
45. H,0,+ H = HO, + H, 1.60E+12 0.000  3800.

46. H,0,+ OH = H,0 + HO, 1.00E+13  0.000 1800.

@ Third body efficiencies: kr)(HgO) = 21k5(AT), ks(Hz) = 3.3k5(AT), ks(NQ) = 1\3(()2) = 0.
* Third body efficiencies: ko( H,0) = 6ky2(Ar), kio(H) = 2k12(Ar), ki2(Hz2) = 3k, (4r).
“ Third body efficiency: k\4(H;0) = 20k 4(Ar).
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Figure 1: Schematic illustration of a counterflow flame.
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Figure 5: Comparison between measured (o) and calculated
values (solid line) of the temperature profile.
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Figure 16: Residuals plotted against number of function eval-

uations (approximately proportional to CPU time) for Plain
TEACH for the test problem on a 16 x 16 grid.
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Figure 18: Residuals plotted against number of function eval-
uations for TEACH for the test problem on a 30 x 30 grid.
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